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Abstract. A major step in a successful application of unsteady flow models based on
the numerical (four-point implicit, nonlinear finite-difference) solution of the complete
one-dimensional Saint-Venant equations, is the selection of the magnitudes of the
computational distance step (Ax) and time step (At) used in the numerical solution
technique. A theoretical explanation is presented for the basis of the empirical selec-
tion criteria used rather successfully for a number of years; also, an enhanced time
step selection criterion is presented. The suitability of the selection criteria is demon-
strated using a numerical convergence testing technique for a wide spectrum of
unsteady flow applications ranging from rapidly to slowly rising hydrographs in very
flat to very steep sloping channels.

Introduction

Four-point implicit nonlinear finite-difference approximation equations of the
complete Saint-Venant unsteady flow equations constitute the most extensively used
basis of implicit dynamic routing models such as the NWS DAMBRK (Dam-Break),
DWOPER (Dynamic Wave Operational) and FLDWAYV (Flood Wave) (Fread, 1985,
1988). 1t is most important that appropriate computational distance (Ax) and time step
(At) parameters be used in the application of these routing models. If the selected
values are too small, the computations are inefficient, sometimes to the extent of
making the application too expensive or time consuming and therefore infeasible;
however, if the values are too large, the resulting truncation error (the difference
between the true solution of the partial differential Saint-Venant equations and the
approximate solution of the four-point implicit finite-difference approximations of the
Saint-Venant equations) can cause significant errors in the computed discharges and
corresponding water-surface elevations; and the errors may be so large as to make the
computations totally unrealistic. Unrealistic solutions can cause the computer program

! Director and Research Hydrologist, National Weather Service, Hydrologic Res.
Lab., 1325 East-West Highway, Silver Spring, MD 20910.



to abort when computed elevations result in negative depths; also, unrealistic solutions
can result in significant irregularities (spurious spikes) in the computed hydrographs.

Over several years of experience with the selection of Ax and At values for the
NWS implicit dynamic routing models in numerous applications, the following
empirical selection criteria evolved:

Ax < ¢ TJ20 (D
and, At = TJ20 )

where T, is the hydrograph’s time of rise (time from the significant beginning of
increased discharge to the peak of the discharge hydrograph), in hours; and c is the
bulk wave speed (the celerity associated with an essential characteristic of the
unsteady flow such as the peak or center of gravity of the hydrograph), in miles/hour;
At is the computational time step size, in hours; and Ax is the computational distance
step size, in miles. In most applications, the bulk wave speed is well approximated as
a kinematic wave. Since c can vary along the waterway (channel, river, reservoir,
estuary), Ax may not be constant. The kinematic wave celerity is approximated as:

c=k’V 3)

in which k'’ is the kinematic wave ratio having values ranging from 4/3 < k' < 5/3
(k' = 3/2 for most natural channels), and V is the flow velocity.

Herein, a theoretical explanation for the Ax and At empirical selection criteria
is presented. The suitability of the selection criteria is demonstrated using numerical
convergence testing for a wide spectrum of unsteady flow applications.

Theoretical Derivation of Ax and At Criteria

Theoretical wave damping (attenuation) and celerity (velocity) error (e)-
diagrams were obtained previously by Fread (1974) using a Fourier technique to
analyze linearized Saint-Venant equations. The e-diagrams showed convergence ratios
(ratio of implicit finite-difference solution of linearized equations to their analytical
solution) for wave damping and celerity plotted against D; (wave discretization
numbers) for a range of D (Courant numbers) values and (D) dimensionless friction
numbers. Recently, a relationship between D; and D¢ was found for error values in
the range of 0 to 5 percent; i.e.,

DL 21 Dc 4)

where 7 is approximately 12 for e = 2 percent, and 7 = 7 for e = 5 percent. The
wave discretization number (D;) is defined as:

Dy = L, /Ax &)
where L, is the wave length and Ax is the computational distance step. However,
Lo=cT=c3T, ©6)

where c is the kinematic wave celerity, T is the wave period of the unsteady
disturbance (wave), and T, is the time of rise of the wave or hydrograph. Substituting
Eq. (6) into Eq. (5) yields:

D, = 3 ¢ T/Ax )



The Courant number (D) is defined as:

D¢ = ¢/ At/Ax (8)
where ¢/ =V + veD 9

in which ¢’ is the dynamic wave celerity, V is flow velocity, g is the gravity
acceleration constant, and D is the hydraulic depth of flow.

Ax Selection Criteria. Substituting Eq. (7) into Eq. (4) yields:

3c¢T,/Ax > 7 D¢ (10)
which can be rearranged to give:
¢ T,
A € —— (11)
n Dc/3

If 7 is replaced with the conservative value of 12, i.e., a 2 percent level of truncation
error is tolerated, and if Do > 5, then ,

Ax < ¢ T /20 (12)
which is identical with the empirical formula for Ax selection, i.e, Eq. (1).

The Ax selection criterion, Eq. (12), is based on the linearized form of the
Saint-Venant equations; however, the complete Saint-Venant equations used in the
NWS implicit routing models are nonlinear. The nonlinear terms can interact with
highly nonlinear data, e.g. channel properties, so as to require even smaller Ax
computational distance steps (Fread, 1988) than specified by Eq. (12).

At Selection Criterion. In order to find an expression for the selection of At, Eq. (7)
and Eq. (8) are substituted into Eq. (4). This gives:

3¢T,/Ax > qc’ AYAx (13)
which can be rearranged to give:

At < T/M (14)
where M =y ¢’ /(3 ¢) (15)

Replacing 5 with the conservative value of 12 which allows a 2 percent level of
truncation error, and substituting Eq. (3) and Eq. (9) into Eq. (15) yields:

M = 4 (V +/gD)/(1.5V) (16)
Now, the Manning equation is used for V, i.e.,
V =4/ D5 2 (17)

in which u’ is 1.49 (1.0 if SI units), D is hydraulic depth, S, is bottom slope, and n is
the Manning roughness coefficient. Substituting this in Eq. (16) gives:

M = 2.67[1 + & n®%(q%! 53] (18)

in which # is 3.97 (US units) and 3.13 (SI units), and q is the average unit width
discharge along the routing reach. Using typical values for S,, n, and q provides a



range of M values generally not exceeding 6 < M < 30. Thus, Eq. (14) with an M
value of 20 is the same as Eq. (2). Unlike Eq. (2), At is variable in Eq. (18).

AN
Convergence Testin Vali Ax and At Selection Criteri AN

AN
Numerical convergence testing is a technique wherein sensitivity tests a\re\\
performed for a given problem to see if a sequence of unsteady numerical solutions
with increasingly refined computational distance (Ax) and time (At) steps approach a
fixed value, i.e., the numerical solution has converged if further refinement of Ax and
At produces insignificant change in the solution.

Convergence testing is applied to three cases spanning a wide spectrum of
unsteady flow applications ranging from rapidly to slowly rising hydrographs in very
flat to steep sloping channels. In each case, the channel is 100 ft (30 m) wide with a
constant Manning n of 0.045, an initial flow of 2000 cfs (56.6 cms), and a single-
peaked inflow hydrograph with Qp“k = 20000 cfs (566.3 cms). Case (1) has a flat
channel slope of 0.0002 and an inflow hydrograph with T, = 1.0 hr; the routing
reach is 20 miles long; convergence testing is at mile 10. Case (2) is identical to case
(1) except the channel slope is steep (0.01). Case (3) has a very flat channel slope
of 0.0001 and an inflow hydrograph with T, = 72 hr; the routing reach is 100 miles;
convergence testing is at mile 50.

Case (1) (the flat channel and rapidly rising hydrograph) convergence testing
results are shown in Fig. 1a for At of 0.05 hr and Ax distance steps of 5, 2.5, 2.0,
1.0, 0.5, and 0.25 miles. Erroneous leading waves appear for all distance steps, Ax
= 1.0 mile, and the hydrograph peak ceases to vary by less than 0.1 percent for the
0.5 mile distance step. Eq. (12), using a wave speed (c) of 7.0 mi/hr, gives a Ax
value of 0.36 mile which is near that (0.5 mile) obtained from the convergence
testing. As indicated in Fig. 1b, convergence seems to be is reached with the time
step of about 0.05 hr. This is in agreement with E5. (14) which also yields a value of
0.05 hr using a computed value of 21 for M from Eq. (18).
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Case (2) (the steep channel and rapidly rising hydrograph) convergence testing
results are shown in Fig. 2 for a At of 0.10 hr. Convergence appears to be reached
with a distance step Ax < 2.0 miles compared with a value of 1.67 miles provided by
Eq. (12) using a wave celerity (c) of 33.3 mi/hr.

Case (3) (the very flat channel and slow rising hydrograph) convergence
testing results are shown in Fig. 3 for a At of 3 hr. Convergence appears to be
attained for Ax < 25 miles compared to a computed value of 15 miles provided by
Eq. (12) using a wave celerity of 4.2 mi/hr.
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Conclusions

Critical to applications of Saint-Venant based implicit dynamic routing models
is the selection of the computational distance steps (Ax) and time steps (At). A
theoretical derivation is given for the Ax and At selection criteria. These criteria not
only explain the utility of the previous empirical formulae in producing acceptable
computational results, but are also capable of yielding appropriate Ax and At values
for routing applications significantly differing from past experience. The validity of
the selection criteria is demonstrated through convergence testing.
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